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Q - Why do we care?
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. We here are all dimension ninjas

A1

We think about higher/lower dimensions for all variety of
phenomenological and theoretical reasons

We think about 4-e non-integer dimensions to do
calculations (most of the time setting e->0 at the end, but
not always, e.g. Wilson Fisher fixed point)

Do 1/N expansions



Q - Why do we care?
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A2- Symmetry is the main tool we have to
_ understand anything about QFT

Lets go back 100 years..



Degeneracy in QM

Quantum mechanics begin when the spectrum of the Hydrogen atom
was calculated, circa 1926 (Heisenberg, Pauli, Schrodinger)

It exhibited a striking feature
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Degeneracy in QM

Quantum mechanics begin when the spectrum of the Hydrogen atom
was calculated, circa 1926 (Heisenberg, Pauli, Schrodinger)

It exhibited a striking feature
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Degeneracy in QM

Quantum mechanics begin when the spectrum of the Hydrogen atom
was calculated, circa 1926 (Heisenberg, Pauli, Schrodinger)

It exhibited a striking feature

nA2
This is unsurprising: states within 5 7 16
the same irrep of the SO(3)
rotational symmetry are degenerate 5 9
n=2 1 3 — I 4

21+
n=1 ———— ; 1
The degeneracy between states

=0 of different SO(3) irreps is down
to a hidden SO(4) symmetry



Degeneracy in QM

The Lamb shift played a central role in the development of field theory
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O(N) for non-integer N: If the theory is a CFT, it is non-unita




Degeneracy in QM

Macroscopic changes

Single molecule magnets are molecular crystals with
essentially non-interacting spins at centre of each molecule




Degeneracy in QM

Macroscopic changes

Single molecule magnets are molecular crystals with
essentially non-interacting spins at centre of each molecule
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Assume: spectrum continuity

Key result: the continued representation theory dictates some
states drop out - “are evanescent” - in pairs of equal energy

This is a novel phenomena: we call it ‘evanescent-degeneracy’
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Key result: the continued representation theory dictates some
states drop out - “are evanescent” - in pairs of equal energy

This is a novel phenomena: we call it ‘evanescent-degeneracy’
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Degeneracy at isolated points of
parameter N - when it is an integer

Accompanied by a major physical e.g. known existence of unitary

change: the theory becomes unitary islands with N=1,2,3 in d=3 via
conformal bootstrap approach

n=4

Occurs between different irreps of n=3
O(N), a la Hydrogen spectrum =

n=1
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Writing this in terms of SU(2) representations, we can use Young diagram
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Adding spins
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Writing this in terms of SU(2) representations, we can use Young diagram

SU(2): X = o (D
SU(3): X O = D
SU(4): = — D
SU(N>2): X O = D
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Analytic continuation for O(N)

With ‘large N saturated’ multiplicities and specialisation rules
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Analytic continuation for O(N)

These specialisation rules are known, but
only relatively recently (in the context of the
history of representation theory!)

K. Koike and I. Terada, Young-diagrammatic methods
for the representation theory of the classical groups of

type Bn, Cpn, Dy, Journal of Algebra 107, 466 (1987).

With ‘large N saturated’ multiplicities and sp ation rules
_1,2 : 1,2 _
c;;" = lim c¢;° (N 299
k ol Gk (V) Ry — 777

At ‘too low’ integer values of N
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ut can’t have a
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Conclusion

It’s quite a surprise that, given how ubiquitous O(N) symmetry
IS In physics, and how often we play around varying N, there
were unnoticed physics consequences of symmetry

Learned something about dim reg

N Iis an interesting knob to start to investigate
mechanisms of unitarity restoration/loss

N 4




