
Tom Melia, Kavli IPMU

Physics of varying 
spacetime dimensions

Moorea, PACIFIC 2024 

Cao, Lu, TM SciPost Phys. Core 7, 055 (2024)



What’s the 
2D version of 
a sphere?Q:

2D 3D

sphere



2D 3D

sphereCircle



2D 3D

sphereCircle

What’s the 
4D version of 
a sphere?

Q:

4D



2D 3D

sphereCircle

4D

sphere
Four dimensional 



2D 3D

sphereCircle

4D

sphere
Four dimensional 

Q: What’s the 
2.7434 D 
version of a 
sphere?



2D 3D

sphereCircle

4D

sphere
Four dimensional 

What’s the 
2.7434 D 
version of a 
sphere?

Q: A 2.7434 
dimensional 
sphere

A:
D



2D 3D

sphereCircle

4D

sphere
Four dimensional 

What’s the 1 D version of a sphere?Q:

D

?
1D



2D 3D

sphereCircle

4D

sphere
Four dimensional 

What’s the 1 D version of a sphere?Q:

D

?
1D

A: This talk



Why do we care?Q:



Why do we care?Q:
We here are all dimension ninjasA1:

We think about higher/lower dimensions for all variety of 
phenomenological and theoretical reasons

We think about 4-e non-integer dimensions to do 
calculations (most of the time setting e->0 at the end, but 
not always, e.g. Wilson Fisher fixed point)

Do 1/N expansions

….



Why do we care?Q:

Symmetry is the main tool we have to 
understand anything about QFT

Lets go back 100 years.. 

A2:



Degeneracy in QM

Quantum mechanics begin when the spectrum of the Hydrogen atom 
was calculated, circa 1926 (Heisenberg, Pauli, Schrödinger)

It exhibited a striking feature
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This is unsurprising: states within 
the same irrep of the SO(3) 
rotational symmetry are degenerate

Quantum mechanics begin when the spectrum of the Hydrogen atom 
was calculated, circa 1926 (Heisenberg, Pauli, Schrödinger)
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This is unsurprising: states within 
the same irrep of the SO(3) 
rotational symmetry are degenerate

The degeneracy between states 
of different SO(3) irreps is down 
to a hidden SO(4) symmetry

Quantum mechanics begin when the spectrum of the Hydrogen atom 
was calculated, circa 1926 (Heisenberg, Pauli, Schrödinger)



Degeneracy in QM
The Lamb shift played a central role in the development of field theory

Fine structure



Degeneracies removed by small 
perturbations

Level n 
degeneracies 

in first H 
model



Degeneracies removed by small 
perturbations

Level n 
degeneracies 

in first H 
model

Non-unitary QFT

Unitary QFT

O(N) for non-integer N: If the theory is a CFT, it is non-unitary
[Binder and Rychkov 1911.07895]
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coupled to all Mn4+ ions) and zero-field splitting (ZFS) of this ground-state of
D¼"0.5 cm"1 [3]. But most importantly, they discovered that the molecules
display frequency-dependent out-of-phase signals, χ00, analogous to those observed
in superparamagnets [4] and spin glasses [5], since as they stated “. . .it is tempting
to attribute these to factors analogous to those observed in superparamag-
nets. . .although the dimensions of the clusters are still much smaller than those
observed in superparamagnets.”; the trip to Ithaca was almost over. Indeed, 2 years
later the magnetic bistability of 1·2MeCO2H·4H2O, hereafter Mn12OAc, was
reported and magnetic hysteresis loops of molecular origin were observed for the
first time, opening the door for potential magnetic data storage at the molecular
level and signalling the era of Single-Molecule Magnets [6]. The term “Single-
Molecule Magnet (SMM)” was introduced 3 years later [7], and it describes all
molecules that can retain their magnetisation once magnetised under an external
magnetic field upon removal of the external stimuli. Although this was not the first
time that retention of magnetisation was observed at a molecular level (see for
example: [8–14]), it was the first time that such behaviour was due to isolated,
discrete molecules and not to domains of magnetically ordered or “frozen” spins.

The combination of a large spin ground state, S, and a negative zero-field
splitting of that ground state, D, are the prerequisites for any molecule to display
such properties, since they “raise” an energy barrier to magnetisation reversal via
thermal deactivation (over the barrier), U, which is manifested in temperature and
sweep-rate-dependent hysteresis loops in magnetisation versus field studies
(Fig. 2); the height of this barrier is given by U¼ |D|·S2 and U¼ |D|·(S2"¼), for
integer and half-integer spin ground-states, respectively (Fig. 3). Furthermore,

Fig. 1 The molecular structure of [Mn12O12(CH3COO)16(H2O)4] (1), highlighting its
[MnIV4MnIII8O12]

16+ core (in bold), as well its {MnIV4O4}
8+ sub-unit (in yellow). Hydrogen

atoms are omitted for clarity. Colour code: MnIII¼ red, MnIV¼ purple, O¼ green, C¼ gold

Cluster-Based Single-Molecule Magnets 3

Degeneracy in QM
Macroscopic changes

Single molecule magnets are molecular crystals with 
essentially non-interacting spins at centre of each molecule

SMMs provided the first clear-cut experimental observation of macroscopic
quantum tunnelling of the magnetisation (QTM), displaying steps in the
Magnetisation (M ) vs. applied field (H ) curves (hysteresis loops) in Mn12OAc
below the blocking temperature of ~3 K (Fig. 3) [15, 16]. According to this
phenomenon, the spins manage to “cheat” the energy barrier to magnetisation
reversal, and instead of climbing over it, they transport from one side of the barrier
to the other “through” it, resulting in a lowering of the theoretical energy barrier,
U, to the experimentally observed, Ueff; the larger the Ueff, the slower the
relaxation, and thus the more technological potential the molecule may display.
The contribution of the QTM effect in the relaxation process may be estimated by
single-crystal ultra-low temperature M vs. H measurements, at which the thermal
deactivation is quenched, and, thus, any relaxation observed may be attributed to
the QTM.

From Fig. 2, we can see that at zero applied field the magnetisation of the
molecule,M, can take one of two values: either positive or negative. That indicates
that the molecule “remembers” the sense of the field that was applied to it,
suggesting the employment of such molecules for information storage. How far

Fig. 2 Magnetisation (M )
vs. applied field (H ) curves,
displaying magnetic
hysteresis loops for a single
crystal of
1·2CH3COOH·4H2O with
the applied field along the
easy axis of magnetisation.
The dotted lines correspond
to characteristic applied
field’s values which
enhance the magnetic
relaxation through QTM

Fig. 3 Energy barrier to
magnetisation reversal at
zero-field; the red line
indicates the course of
thermal deactivation, while
the dotted blue arrows
indicate QTM transitions

4 C.J. Milios and R.E.P. Winpenny
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such properties, since they “raise” an energy barrier to magnetisation reversal via
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Degeneracy in QM
Macroscopic changes

Single molecule magnets are molecular crystals with 
essentially non-interacting spins at centre of each molecule

Tuning B field, degeneracies between 
the wells enhances quantum tunnelling, 
jumps in the hysteresis curve

SMMs provided the first clear-cut experimental observation of macroscopic
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states drop out - “are evanescent” - in pairs of equal energy

This is a novel phenomena: we call it ‘evanescent-degeneracy’
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Assume: spectrum continuity

This is a novel phenomena: we call it ‘evanescent-degeneracy’

Symmetry based argument - 
fully non-perturbative

Key result: the continued representation theory dictates some 
states drop out - “are evanescent” - in pairs of equal energy
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Degeneracy at isolated points of 
parameter N - when it is an integer

Accompanied by a major physical 
change: the theory becomes unitary

e.g. known existence of unitary 
islands with N=1,2,3 in d=3 via 
conformal bootstrap approach

SMMs provided the first clear-cut experimental observation of macroscopic
quantum tunnelling of the magnetisation (QTM), displaying steps in the
Magnetisation (M ) vs. applied field (H ) curves (hysteresis loops) in Mn12OAc
below the blocking temperature of ~3 K (Fig. 3) [15, 16]. According to this
phenomenon, the spins manage to “cheat” the energy barrier to magnetisation
reversal, and instead of climbing over it, they transport from one side of the barrier
to the other “through” it, resulting in a lowering of the theoretical energy barrier,
U, to the experimentally observed, Ueff; the larger the Ueff, the slower the
relaxation, and thus the more technological potential the molecule may display.
The contribution of the QTM effect in the relaxation process may be estimated by
single-crystal ultra-low temperature M vs. H measurements, at which the thermal
deactivation is quenched, and, thus, any relaxation observed may be attributed to
the QTM.
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suggesting the employment of such molecules for information storage. How far
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Occurs between different irreps of 
O(N), a la Hydrogen spectrum
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Writing this in terms of SU(2) representations, we can use Young diagram

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:

�
SU(N)
�1

�
SU(N)
�2

=
X

all �

m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
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, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
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(1,1) (x) =

1
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h
�
O(N)
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. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
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Similarly, the explicit form of F(2,2) and F(2,1,1) give
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O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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�
SU(N)
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, (4)

where we introduced �
SU(N)
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which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters
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will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are
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with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.
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focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
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(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product
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the O(N) case. However, the specialization rule of the
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in terms of the ordinary ones
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that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m
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in the continued
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pressions are known [22], which we also reproduce in the
appendix.
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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where we introduced �
SU(N)
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which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters
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will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
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with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters
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O(N)
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(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the
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in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can
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). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m
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pressions are known [22], which we also reproduce in the
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the appendix.
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). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m
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in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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uation of the characters and a continued tensor product
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holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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as the ordinary char-
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Eq. (4) are
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with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
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Using these, one can check that at N = 2, Eq. (5) does
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Coast”) that have N boxes. If these columns have more
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details are provided in the appendix.
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will see in Sec. III that these lead to the constraints.
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(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product
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3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:

�
SU(N)
�1

�
SU(N)
�2

=
X

all �

m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
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O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
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will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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2
= 0� 1

Writing this in terms of SU(2) representations, we can use Young diagram
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holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:

�
SU(N)
�1

�
SU(N)
�2

=
X

all �

m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters
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will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are
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=
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>><

>>:

�
SU(N)
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N > l

�
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(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
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(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the
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in terms of the ordinary ones
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O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):
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+
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where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
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). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m
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�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads
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For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
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(1,1) (x). At N = 3, Eq. (11)

leads to
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
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will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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character, while referring to �
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as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are
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with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
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Using these, one can check that at N = 2, Eq. (5) does
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Coast”) that have N boxes. If these columns have more
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details are provided in the appendix.
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ping the East Coast of a Young diagram” described in
the appendix.
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holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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X
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m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
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The continued characters can be computed from it as
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h
�
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(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
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1
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For N � 4, � = (1, 1) gives a valid representation, and

hence �
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O(N�4)
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while at N = 2 it gives
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Similarly, the explicit form of F(2,2) and F(2,1,1) give
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() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
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(1) (x1, · · · , xr) =

1� (�1)N

2
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The continued characters can be computed from it as
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�
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h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2
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�
O(N)
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For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
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O(3)
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while at N = 2 it gives

�
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Similarly, the explicit form of F(2,2) and F(2,1,1) give
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�
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() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)
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3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
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). The point is

that the functions F� are independent of N , encoding
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pressions are known [22], which we also reproduce in the
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating
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an ordinary one �
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�0 with l(�0)  r. This can also be
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described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
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the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):
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(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x
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1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads
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hence �
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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uation of the characters and a continued tensor product
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details are provided in the appendix.
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Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
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appendix.

For example, when � = (1, 1), the explicit form of
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hence �
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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where we introduced �
SU(N)
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which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters
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with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):
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From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.
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From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.
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will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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uation of the characters and a continued tensor product

3

holds for all N in the same way, providing a natural con-
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details are provided in the appendix.
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�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
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The continued characters can be computed from it as
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�
O(N)
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, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads
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1
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hence �
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
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with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):
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while for SU(3), Eq. (5b) does specialize as
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From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.
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focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
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�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
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where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
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r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads
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For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
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(1,1) (x). At N = 3, Eq. (11)

leads to
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.
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From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
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details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:

�
SU(N)
�1

�
SU(N)
�2

=
X

all �

m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

2D 3D 4D

D

?
1D

N2 3 4 5 6

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:

�
SU(N)
�1

�
SU(N)
�2

=
X

all �

m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:

�
SU(N)
�1

�
SU(N)
�2

=
X

all �

m
�

�1�2
�
SU(N)
�

, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters

�
SU(N)
�

will “specialize” [22] as zero or as some ordinary
ones, with the e↵ect that the continuation in Eq. (4)
specializes as Eq. (2). The specialization rules are

�
SU(N)
�=(�1,··· ,�l)

=

8
>><

>>:

�
SU(N)
�

N > l

�
SU(N)
(�1��l,··· ,�l�1��l)

N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):

2⇥ 2 = 3+ 1 , (7a)

2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.

O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
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). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.
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hence �
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

3

holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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where we introduced �
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Eq. (4) are

⌦ = � , (5a)
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with some explicit examples listed in Table I. The rule
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details are provided in the appendix.
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character, while referring to �
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as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)
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with some explicit examples listed in Table I. The rule
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Using these, one can check that at N = 2, Eq. (5) does
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while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.
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focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
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(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product
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the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):
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(1) (x1, · · · , xr) =

1� (�1)N
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(xi + x
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The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product
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holds for all N in the same way, providing a natural con-
tinuation of it to non-integer N [11, 12, 21]:
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X

all �

m
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�1�2
�
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, (4)

where we introduced �
SU(N)
�

which we call the continued

character, while referring to �
SU(N)
�

as the ordinary char-
acter. Some simple examples of the continued algebra in
Eq. (4) are

⌦ = � , (5a)

⌦ ⌦ = � 2 � , (5b)

⌦ ⌦ ⌦ = � 3 � 2 � 3 � . (5c)

At a given finite integer N , the continued characters
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>><

>>:

�
SU(N)
�

N > l
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N = l

0 N < l

, (6)

with some explicit examples listed in Table I. The rule
for N = l is recognizable as originating from the con-
traction of the irrep with the SU(N = l) epsilon tensor.
Using these, one can check that at N = 2, Eq. (5) does
specialize to reproduce the expected ones for SU(2):
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2⇥ 2⇥ 2 = 4+ 2 (2) , (7b)

2⇥ 2⇥ 2⇥ 2 = 5+ 3 (3) + 2 (1) , (7c)

while for SU(3), Eq. (5b) does specialize as

3⇥ 3⇥ 3 = 10+ 2 (8) + 1 . (8)

From the Young diagram point of view, Eq. (6) can be
described as clipping o↵ the leftmost columns (the “West
Coast”) that have N boxes. If these columns have more
than N boxes, the clipping fails and returns zero. More
details are provided in the appendix.
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focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
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). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m
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in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.
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For N � 4, � = (1, 1) gives a valid representation, and

hence �
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A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product
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details are provided in the appendix.
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will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product
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holds for all N in the same way, providing a natural con-
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From the Young diagram point of view, Eq. (6) can be
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Coast”) that have N boxes. If these columns have more
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details are provided in the appendix.
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O(N) character continuation: In this paper, we
focus on O(N) irreps with integer spins. They can also be
labeled by partitions � = (�1, · · · ,�l) (and hence Young
diagrams), again with the length l not exceeding the rank
r of the group, which is now given by r = bN/2c. For
partitions with 2l < N , we take it to mean the parity
even representation of O(N). The ordinary characters

�
O(N)
�

(x1, · · · , xr) can be found in e.g. [25].
The same procedure of continuing the tensor product

decomposition algebra from Eq. (2) to Eq. (4) holds for
the O(N) case. However, the specialization rule of the

continued character �O(N)
�

in terms of the ordinary ones

�
O(N)
�0 is not as simple as in Eq. (6). The new rule can

be worked out by considering the vector representation,
which is valid for any integer N � 1 (for N = 1 it is the
character for the trivial irrep of the Z2 symmetry):

�
O(N)
(1) (x1, · · · , xr) =

1� (�1)N

2
+

rX

i=1

(xi + x
�1
i

) . (9)

The continued characters can be computed from it as

�
O(N)
�

(x) = F�

h
�
O(N)
(1) (x) , · · · , �O(N)

(1) (xq)
i
, (10)

where q = �1 + · · · + �l and we are using the shorthand
x = (x1, · · · , xr) and x

k = (xk
1 , · · · , xk

r
). The point is

that the functions F� are independent of N , encoding
the Newell-Littlewood numbers m

�

�1�2
in the continued

tensor product decomposition algebra. Their explicit ex-
pressions are known [22], which we also reproduce in the
appendix.

For example, when � = (1, 1), the explicit form of
F(1,1) reads

�
O(N)
(1,1) (x) =

1
2

h
�
O(N)
(1) (x)

i2
� 1

2 �
O(N)
(1)

�
x
2
�
. (11)

For N � 4, � = (1, 1) gives a valid representation, and

hence �
O(N�4)
(1,1) (x) = �

O(N�4)
(1,1) (x). At N = 3, Eq. (11)

leads to

�
O(3)
(1,1)(x) = 1 + x1 + x

�1
1 = �

O(3)
(1) (x) , (12)

while at N = 2 it gives

�
O(2)
(1,1)(x) = 1 = �

O(2)
() (x) . (13)

Similarly, the explicit form of F(2,2) and F(2,1,1) give

�
O(2)
(2,2)(x) = �x

2
1 � x

�2
1 = ��

O(2)
(2) (x) , (14a)

�
O(1)
(2,2) = �1 = ��

O(1)
() , (14b)

�
O(2)
(2,1,1)(x) = �1 = ��

O(2)
() (x) . (14c)

A few more nontrivial examples are summarized in Ta-
ble II. Compared with Table I, we see that a prominent
new feature of the O(N) case is the negative signs. We
will see in Sec. III that these lead to the constraints.
The above provides an explicit method for calculating

how a given continued character �O(N)
�

will specialize as

an ordinary one �
O(N)
�0 with l(�0)  r. This can also be

achieved by the method of “folding a Young diagram”
described in [22], or our alternative prescription of “clip-
ping the East Coast of a Young diagram” described in
the appendix.

Partition function continuation: With the contin-
uation of the characters and a continued tensor product

c.f.

This is the right way to analytically continue.  
Go to high enough N where we know what the 

representation is.  
Supplement with rules at special N
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only relatively recently (in the context of the 
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It gives us a new Young diagram (5, 4, 3, 3, 1, 1, 1). This
clipping has nrows = 2, which according to Eq. (B8), gives
us a negative overall sign:

�
O(7)
(5,4,3,3,3,2,1) = ��

O(7)
(5,4,3,3,1,1,1) . (B10)

Following the last step in the prescription, we now use
this new Young diagram (5, 4, 3, 3, 1, 1, 1) as input to re-
peat the clipping steps. We find the second round of
clipping

-3 -4

-1 -2

0

3 2 1

4

5

6

�! . (B11)

It gives us a new Young diagram (5, 4, 2). This clipping

has nrows = 5, which according to Eq. (B8), gives us a
positive overall sign:

�
O(7)
(5,4,3,3,1,1,1) = �

O(7)
(5,4,2) . (B12)

Now using (5, 4, 2) as new input again to repeat the clip-
ping steps, we finally find that there is no need to clip
further, because no clipping center can be found; the al-
gorithm returns

�
O(7)
(5,4,2) = �

O(7)
(5,4,2) . (B13)

Putting Eqs. (B10), (B12) and (B13) together, we get
the final output of the prescription

�
O(7)
(5,4,3,3,3,2,1) = ��

O(7)
(5,4,2) . (B14)
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Z = dim e�E(N)/T + . . .
This is what is known in QFT as ‘evanescence’, and we 
can see there are a number of different types that can 

happen. (This had not been appreciated before) 
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Conclusion

It’s quite a surprise that, given how ubiquitous O(N) symmetry 
is in physics, and how often we play around varying N, there 

were unnoticed physics consequences of symmetry

N is an interesting knob to start to investigate 
mechanisms of unitarity restoration/loss

coupled to all Mn4+ ions) and zero-field splitting (ZFS) of this ground-state of
D¼"0.5 cm"1 [3]. But most importantly, they discovered that the molecules
display frequency-dependent out-of-phase signals, χ00, analogous to those observed
in superparamagnets [4] and spin glasses [5], since as they stated “. . .it is tempting
to attribute these to factors analogous to those observed in superparamag-
nets. . .although the dimensions of the clusters are still much smaller than those
observed in superparamagnets.”; the trip to Ithaca was almost over. Indeed, 2 years
later the magnetic bistability of 1·2MeCO2H·4H2O, hereafter Mn12OAc, was
reported and magnetic hysteresis loops of molecular origin were observed for the
first time, opening the door for potential magnetic data storage at the molecular
level and signalling the era of Single-Molecule Magnets [6]. The term “Single-
Molecule Magnet (SMM)” was introduced 3 years later [7], and it describes all
molecules that can retain their magnetisation once magnetised under an external
magnetic field upon removal of the external stimuli. Although this was not the first
time that retention of magnetisation was observed at a molecular level (see for
example: [8–14]), it was the first time that such behaviour was due to isolated,
discrete molecules and not to domains of magnetically ordered or “frozen” spins.

The combination of a large spin ground state, S, and a negative zero-field
splitting of that ground state, D, are the prerequisites for any molecule to display
such properties, since they “raise” an energy barrier to magnetisation reversal via
thermal deactivation (over the barrier), U, which is manifested in temperature and
sweep-rate-dependent hysteresis loops in magnetisation versus field studies
(Fig. 2); the height of this barrier is given by U¼ |D|·S2 and U¼ |D|·(S2"¼), for
integer and half-integer spin ground-states, respectively (Fig. 3). Furthermore,

Fig. 1 The molecular structure of [Mn12O12(CH3COO)16(H2O)4] (1), highlighting its
[MnIV4MnIII8O12]

16+ core (in bold), as well its {MnIV4O4}
8+ sub-unit (in yellow). Hydrogen

atoms are omitted for clarity. Colour code: MnIII¼ red, MnIV¼ purple, O¼ green, C¼ gold

Cluster-Based Single-Molecule Magnets 3

SMMs provided the first clear-cut experimental observation of macroscopic
quantum tunnelling of the magnetisation (QTM), displaying steps in the
Magnetisation (M ) vs. applied field (H ) curves (hysteresis loops) in Mn12OAc
below the blocking temperature of ~3 K (Fig. 3) [15, 16]. According to this
phenomenon, the spins manage to “cheat” the energy barrier to magnetisation
reversal, and instead of climbing over it, they transport from one side of the barrier
to the other “through” it, resulting in a lowering of the theoretical energy barrier,
U, to the experimentally observed, Ueff; the larger the Ueff, the slower the
relaxation, and thus the more technological potential the molecule may display.
The contribution of the QTM effect in the relaxation process may be estimated by
single-crystal ultra-low temperature M vs. H measurements, at which the thermal
deactivation is quenched, and, thus, any relaxation observed may be attributed to
the QTM.

From Fig. 2, we can see that at zero applied field the magnetisation of the
molecule,M, can take one of two values: either positive or negative. That indicates
that the molecule “remembers” the sense of the field that was applied to it,
suggesting the employment of such molecules for information storage. How far

Fig. 2 Magnetisation (M )
vs. applied field (H ) curves,
displaying magnetic
hysteresis loops for a single
crystal of
1·2CH3COOH·4H2O with
the applied field along the
easy axis of magnetisation.
The dotted lines correspond
to characteristic applied
field’s values which
enhance the magnetic
relaxation through QTM

Fig. 3 Energy barrier to
magnetisation reversal at
zero-field; the red line
indicates the course of
thermal deactivation, while
the dotted blue arrows
indicate QTM transitions
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